
Object Persistence with Ruby and Smalltalk
BP2012H1

MagLev – Object Persistence with
Ruby and Smalltalk

Dimitri Korsch
Stefan Bunk

Nicco Kunzmann
Matthias Springer

Kirstin Heidler

Supervisors

Prof. Dr. Robert Hirschfeld
Tim Felgentreff

Tobias Pape

Software Architecture Group
Hasso Plattner Institute

University of Potsdam, Germany

July 1, 2013

Preface

Object-oriented applications often rely on persistent data that will continue to
exist even after the application was closed. To save such data, programmers often
use relational databases. They save the data in so called relations, i.e. tables with
a fixed schema.

However, as objects and relations have fundamentally different concepts,
objects cannot be stored in relational databases easily. Aspects such as behavior,
inheritance, object identity or encapsulation cannot be mapped to relations in a
straightforward way. A mapping has to be defined to translate between object
and relational data. This and further differences between object-oriented and
relational concepts are summarized with the term Object-relational Impedance
Mismatch.

To avoid this mismatch, object-oriented databases were built. Instead of
translating objects to relations, they directly store the objects in the database.
This allows to persist arbitrary objects, such as trees, functions, and threads in
the database, without mapping problems.

MagLev is an implementation of the Ruby programming language with a built-
in object database. It is built on top of GemStone/S, a Smalltalk implementation
with a transactional object persistence concept. GemStone/S stores objects in
the database and its virtual machine decides which objects are held in-memory
and which objects are written to the hard-drive.

This work presents different aspects of MagLev: the persistence concept of
MagLev and GemStone/S, a Ruby library for the builtin object database, the
implementation and language collaboration concepts of MagLev, and the course
of action for reimplementing a programming language.

At first, we present MaglevRecord, a library that integrates MagLev’s object
database with Ruby on Rails, a web application framework for Ruby. In the first
two works, we describe the implementation of this library.

Afterwards, we present MaglevRecord’s object migration concepts.
In the next work, we show how MagLev was implemented on top of Gem-

Stone/S, focusing on language collaboration aspects. We describe how program-
mers can write software components in Ruby and Smalltalk and how both lan-
guages can interact with each other.

The last work revolves around the creation of MagLev itself and how to
generally create reimplementations of an already existing programming language.
We focus on programming languages that are like Ruby primarily defined by one
implementation.

July 2013 The Authors

Contents

MagLev – Object Persistence with Ruby and
Smalltalk

Solving the Object-Relational Impedance Mismatch with a Persistent
Programming Language . 3

Dimitri Korsch

MaglevRecord: An Upgrade Path from Object-relational Mapping to
Pure Object Persistence in Web Applications . 33

Stefan Bunk

Development Tools for Working With Persistent Objects: Necessity and
Implementation . 69

Nicco Kunzmann

Inter-language Collaboration in an Object-oriented Virtual Machine 103
Matthias Springer

Reimplementing a Programming Language - Benefits and Problems 137
Kirstin Heidler

Inter-language Collaboration in an
Object-oriented Virtual Machine

Kollaboration zwischen Programmiersprachen in einer
objektorientierten virtuellen Maschine

by

Matthias Springer

A thesis submitted to the
Hasso Plattner Institute for Software Systems Engineering

at the University of Potsdam, Germany
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Software Engineering

Supervisors

Prof. Dr. Robert Hirschfeld
Tim Felgentreff

Tobias Pape

Software Architecture Group
Hasso Plattner Institute

University of Potsdam, Germany

July 1, 2013

Inter-language Collaboration in an
Object-oriented Virtual Machine

Matthias Springer

Hasso Plattner Institute, Potsdam
matthias.springer@student.hpi.uni-potsdam.de

Abstract Multi-language virtual machines imply a number of advan-
tages. They allow software developers to use software libraries that were
written for different programming languages. Furthermore, language im-
plementors do not have to bother with low-level VM functionality and
their implementation can benefit from optimizations in the existing vir-
tual machine. MagLev is an implementation of the Ruby programming
language on top of the GemStone/S (Smalltalk) virtual machine. In this
work, we present how software components written in both languages
can interact. We show how MagLev maps the Smalltalk and the Ruby
object model. MagLev extends Smalltalk’s meta class model to Ruby’s
singleton class and adds support for Ruby modules, by changing the
superclass hierarchy and the instance-of relation. Besides, we show how
we can call Ruby methods from Smalltalk and vice versa. We also present
MagLev’s concept of bridge methods that implements Ruby’s method
calling conventions.

1 Multi-language Virtual Machines

Multi-language virtual machines are virtual machines that support the execution
of source code written in multiple languages. According to Vraný [27], we have to
distinguish multi-lanuguage virtual machines from interpreters and native code
execution. Languages inside a multi-language virtual machines are usually com-
piled to byte code and share the same object space. In contrast, an interpreter is a
program that is written entirely in the host programming language and executes
a guest programming language. The interpreter manages the communication
between host and guest language, e.g. by converting objects and data types.

Multi-language virtual machines allow programmers to write parts of the
program in different languages: they can “use the right tool for each task” [7].
In the following paragraphs, we present the main advantages of multi-language
virtual machines.

Libraries Software libraries are a popular form of code reuse. They increase
productivity [2] and reduce software defects [23]. By supporting multiple pro-
gramming languages, we can use libraries that were written in different languages
at the same time. Therefore, we do not have to reimplement functionality if we
can find a library in one of the supported languages. The more programming

104 Matthias Springer

languages are supported, the higher is the probability that we can find a library
for our purposes.

JRuby1 is an implementation of the Ruby programming language on top of
the Java Virtual Machine (JVM). Ruby libraries are usually packaged as so-called
Gems. RubyGems2 hosts more than 50,000 Gems and many of them can be used
in JRuby. In addition, JRuby programmers can use Java libraries. Java is a
popular and widely used programming language [1], and libraries are available
for almost everything. MvnRepository3 hosts more than 480,000 Java artifacts,
however, also counting different version numbers.

Performance and Portability A programming language that is implemented
on top of an existing virtual machine can benefit from the virtual machine’s
performance and portability [22]. For example, programming languages for the
Java Virtual Machine run on all operating systems and computer architectures
that have a JVM implementation.

The JVM does a lot of optimizations and has a just-in-time compiler that
compiles byte code to native code. Many programmers choose JRuby over the
Ruby reference implementation (MRI) because, in most cases, it is faster [9, 10].
Besides, JRuby supports parallel threads, i.e. it does not have a global interpreter
lock (GIL).

Language Implementation It is probably less work to implement programming
languages on top of one performant virtual machine than developing a perfor-
mant virtual machine from scratch for every programming language. Writing
virtual machines is tedious because it involves a lot of low-level functionality like
memory management, garbage collection, and just-in-time compilation. However,
Vraný comments that “current virtual machines were designed specifically for one
programming language” [27]. Furthermore, he states that virtual machines should
be more open and language-independent to allow or simplify the implementation
of new programming languages.

Features provided by the Virtual Machine A programming language can expose
all features that are provided by the virtual machine. For example, GemStone/S
has a built-in object database. This database can be used from Smalltalk and
MagLev, a Ruby implementation. The object database is seamlessly integrated
into the programming language and is probably the main reason why programmers
decide to use MagLev instead of other Ruby implementations.

Outline of this Work The following sections describe how the Ruby programming
language was implemented on top of GemStone/S. We put particular focus on
language interaction concepts. Section 2 gives a high-level overview of MagLev’s
architecture. The next sections describe three problems that occured during
1 http://jruby.org/
2 http://rubygems.org/
3 http://mvnrepository.com/

http://jruby.org/
http://rubygems.org/
http://mvnrepository.com/

Inter-language Collaboration in an OO VM 105

the implementation of the Ruby programming language in GemStone/S, and
their solution in MagLev. Section 3 describes how the Ruby object model is
mapped onto the Smalltalk object model, including singleton classes and modules.
Section 4 describes how Ruby methods are implemented and how Ruby and
Smalltalk methods can be called. Section 5 explains how instance variables are
accessed and implemented. Section 6 compares our solution of the presented
problems and the implementation of MagLev to other implementations.

2 Introduction to MagLev

MagLev is an implementation of the Ruby programming language on top of
GemStone/S. In this section, we explain important terms and definitions that
we use throughout this work and give a short overview of MagLev.

2.1 Programming Languages

Smalltalk The Smalltalk programming language is an object-oriented, dynami-
cally typed programming language that was designed by Alan Kay, Dan Ingalls,
and Adele Goldberg at Xerox PARC. It was a popular programming language in
the mid-1990s. Smalltalk-80 [15] is a specification of the Smalltalk programming
language.

Ruby The Ruby programming language is an object-oriented, dynamically typed
programming language that was developed by Yukihiro Matsumoto. It became
popular with the web application framework Ruby on Rails. Ruby MRI (Matz’s
Ruby Interpreter) is the reference implementation. All other Ruby implementa-
tions, such as Rubinius, JRuby, and MagLev, try to be as compatible as possible
to Ruby MRI. Ruby has many similarities with Smalltalk and some people even
see Ruby as Smalltalk’s successor. The inventor of Extreme Programming, Kent
Beck, once said “I always knew that one day Smalltalk would replace Java. I just
didn’t know it would be called Ruby” [5].

2.2 Terms and Definitions

GemStone/S GemStone/S is a Smalltalk specification that is close to the
Smalltalk-80 standard. In contrast to Smalltalk implementations like Pharo
and Squeak, it does not come with a graphical user interface (e.g. Morphic).
GemStone/S has a builtin object database that persists objects living in the im-
age [8, 21]. Smalltalk source code is compiled to byte code that is then executed
by the GemStone/S virtual machine.

MagLev MagLev is an implementation of the Ruby programming language on top
of GemStone/S. Its object persistence concepts are integrated in Ruby seamlessly.
MagLev currently supports Ruby 1.8 and there is experimental support for
Ruby 1.9.

106 Matthias Springer

Environments For the implementation of MagLev, GemStone/S was changed
in such a way that it can support multiple programming languages through
environments. We can think of environments as enclosed parts of the system
where only one programming language is allowed. GemStone/S has a Ruby and
a Smalltalk environment.

Class Names In MagLev, classes can have different names in the Ruby environ-
ment and the Smalltalk environment. Whenever we are referring to a class with
its Ruby name, the name is prefixed with two colons. For example, ::Hash is a
Ruby class name but RubyHash is a Smalltalk class name.

2.3 Basic Concepts of MagLev

Figure 1 shows a high-level overview of MagLev’s architecture. Ruby source code
and Smalltalk source code is transformed into an abstract syntax tree (AST).
The compiler converts the AST to byte code. GemStone/S’ just-in-time compiler
eventually generates native code and executes it.

Figure 1. Integration of MagLev in GemStone/S’ architecture.

In MagLev, every Ruby object is a Smalltalk object and vice versa. This is
also true for classes. It does not matter in what programming language a method
was written. Both Ruby and Smalltalk code is compiled to byte code and can
call methods that were written in the other language. We can also see MagLev
as a compatibility layer for Ruby built on top of GemStone/S. It adjusts the
Smalltalk object model to comply with the Ruby object model. Furthermore,
MagLev provides the complete Ruby 1.8 standard library that is written in Ruby
but reuses existing functionality provided by GemStone/S.

3 Mapping Object Models

MagLev does not distinguish between Ruby objects and Smalltalk objects: they
are the same. Both languages are purely object-oriented, i.e. everything is an
object. However, Smalltalk’s meta class model differs from Ruby’s singleton class
model. Furthermore, Ruby supports mixins, whereas GemStone/S does not. In

Inter-language Collaboration in an OO VM 107

this section, we describe how MagLev maps Ruby’s and Smalltalk’s object model,
such that we can use the same objects in the Ruby environment and in the
Smalltalk environment. Most importantly, existing applications should still work
correctly, even if they make assumptions about the underlying object model.

3.1 Classes in Ruby and Smalltalk

In Smalltalk, classes have an association entry in the globals dictionary. We
can mention the class names in the Smalltalk source code and the compiler
automatically replaces them by references to the class. Ruby has a different
concept: classes and modules define namespaces [3]. They are added as constants
to another class or module. The root of the namespace hierarchy is ::Object.
MagLev makes Smalltalk classes available to the Ruby environments by adding
constants with a reference to the class object to ::Object. Afterwards, we can
reference these classes in Ruby.

MagLev can map most Smalltalk classes directly to Ruby classes, e.g. Object
↔ ::Object, String ↔ ::String, UndefinedObject ↔ ::NilClass. Most classes
in Ruby’s standard library are implemented completely in Ruby and are not
known in the Smalltalk environment, e.g. ::WEBrick::HTTPServer, an HTTP web
server. There are also some Smalltalk classes that are not known in the Ruby
environment, e.g. AST classes and GCI4 classes.

It is important to remember that all Ruby objects are Smalltalk objects and
vice versa. Therefore, this is also the case for all classes. Some classes simply
do not have a Smalltalk name or a Ruby name, making it harder to obtain a
reference. If we know a class’ object id, we can always retrieve the class object
and do whatever we want to, both in Ruby and in Smalltalk.

3.2 Ruby Singleton Classes and Smalltalk Meta Classes

Ruby and Smalltalk have related concepts of singleton classes and meta classes, re-
spectively some people call Ruby’s concept of singleton classes a more consequent
and object-oriented implementation of Smalltalk’s meta classes [25].

Smalltalk Every Smalltalk class is an instance of its own meta class [15] that
contains the methods and instance variables for the class side. The meta class is
automatically generated for every non-meta class, and its superclass hierarchy is
parallel to its non-meta class’ superclass hierarchy.

Figure 2 shows a part of GemStone/S’ object model. All meta classes are in-
stances of Metaclass3. Notably, Metaclass3 class is also an instance of Metaclass3.

Ruby The Ruby programming language has a more complex object model.
Instead of meta classes, Ruby has the concept of singleton classes (also called
4 The GemBuilder for C Interface (GCI) is used to communicate with a running

GemStone/S image via network.

108 Matthias Springer

ObjectanObject

nil Class

Metaclass3

Behavior

Metaclass3 class

Behavior class

Metaclass3 classObject

Metaclass3 classClass

Figure 2. GemStone/S’ meta class model. Meta classes are colored gray and instances
of Metaclass3.

eigenclasses). Every object is an instance of its singleton class (Figure 3). There-
fore, every object can have its own methods that are not available for other
objects of the same class. Just as meta classes, singleton classes can have only
one instance. In Smalltalk terms, a non-singleton class’ first level singleton class
can be seen as its meta class. However, singleton classes are instances of their own
singleton classes, as well, whereas meta classes are always instances of Metaclass3
in Smalltalk.

The classes Object, Module, and Class are called helix classes [25] because they
are instances of themselves. For example, Class’ class is #<Class: Class> which
is an indirect subclass of Class. With Ruby 1.9, a fourth helix class, BasicObject,
was introduced.

Object

#<Object: ...> #<Class:
#<Object: ...>>

#<Class: #<Class:
#<Object: ...>>>

#<Class: Object>

Class

Module

#<Class: #<Class:
#<Class: Object>>>>

#<Class: #<Class:
Object>>

#<Class: Class>

#<Class: Module>
...

...

...

...

nil

Figure 3. Ruby’s singleton class model in version 1.8. In Ruby 1.9, Object is a subclass
of BasicObject, which is a subclass of nil. Singleton classes are colored gray. #<Class:
anObject> is the Ruby notation for anObject class.

Inter-language Collaboration in an OO VM 109

Problem In MagLev, every Smalltalk object is a Ruby object and vice versa.
Many popular Rubygems, such as Ruby on Rails Gems, use singleton classes
intensively, making it an important language feature [16]. The following features
must be supported by MagLev and the GemStone/S virtual machine.

– Generating singleton classes. GemStone/S supports only first-level singleton
classes (meta classes). MagLev must be able to generate higher-level singleton
classes.

– Singleton class-aware method lookup. For example, an instance method de-
fined in #<Class: Object> must be callable from instances of #<Class: Class>.

– Interacting with singleton classes in Smalltalk. We need a way to access
singleton classes in Smalltalk and call methods on them.

– Compatibility to exisiting Smalltalk code. The class hierarchy should not be
changed heavily because some Smalltalk applications might make assumptions
about instance-of and superclass relations.

Solution In Ruby, every object is an instance of its singleton class. Smalltalk
supports first-level singleton classes (meta classes) only. Our approach combines
the concept of singleton classes with Smalltalk’s object model.

Object

anObject anObject class

nil

anObject class class

Object class

Class

Metaclass3

Module

Behavior

anObject class class
class

Object class class

Class class

Module class

Behavior class

Metaclass3 class

...

...

...

...

...

...

Figure 4. Combining Smalltalk’s and Ruby’s object model with singleton classes, result-
ing in five helix classes. Singleton classes are colored gray. The class Module is needed
for Ruby modules only and not relevant at this point.

Figure 4 shows what the new object model looks like from the programmer’s
point of view. Every object is an instance of its own singleton class. This horizontal
instance-of relationship repeats forever.

110 Matthias Springer

Generating Singleton Classes The virtual machine cannot generate all singleton
classes on class creation because an infinite number of singleton class levels exists
for every class. Therefore, we generate higher-level singleton classes only when
they are accessed for the first time. The first-level singleton class (Smalltalk meta
class) is, however, automatically generated for Smalltalk compatibility reasons.

superclass(singleton(obj)) =

⎧⎨⎩
class(obj) if obj is not a class
Class if obj == Object
singleton(superclass(obj)) else

Figure 5. Computing the superclass for 𝑜𝑏𝑗’s singleton class.

When a singleton class for the object 𝑜𝑏𝑗 is accessed for the first time, we
have to generate it by subclassing from another class. In Figure 4 we can see
that a singleton class’ superclass is, in most cases, the superclass’ singleton class.
Figure 5 shows the formula for computing a singleton class’ superclass. It contains
special cases for Object and non-class objects, because these objects do not have
a superclass. If the class that was computed by the formula does not exist, we
have to generate it first, using this algorithm recursively.

After we generated the singleton class for an object, we set the object’s class
pointer to its singleton class. Singleton classes are always instances of Metaclass3
until we generate the next-level singleton class.

Generating two Levels of Singleton Classes Whenever we invoke a method on
an object, the virtual machine searches for the selector in the method dictionary
of the object’s class. Therefore, we must additionally generate the second-level
singleton class when the first-level singleton class is accessed for the first time,
to assure that class methods work correctly on singleton classes.

Consider, for instance, that the method example is defined on Object class.
We should be able to call this method by sending example to Object class class.
Therefore, we need to make sure that Object class class class exists and is a
subclass of Object class.

Example In this example, we show how MagLev generates the second-level
singleton class for the object john that is instance of the class Person, without
generating two levels of singleton classes. Figure 6 shows the situation after
we created the class Person and the instance john. GemStone/S automatically
generated the first-level singleton class, that is an instance of Metaclass3.

Now, we want to generate john’s first-level singleton class (Figure 7a). Ac-
cording to Figure 5, the singleton class’ superclass is Person because john is not
a class. Here, we see that it is important to generate two levels of singleton
classes: we cannot call methods defined in Person class on john class although

Inter-language Collaboration in an OO VM 111

Person Person class

Object Object class

john

Metaclass3

...nil

Figure 6. Creating the class Person and its instance john.

this should be possible. john class is still an instance of Metaclass3 that does
not have instance methods that were defined in Person class.

For john’s second-level singleton class (Figure 7b), the superclass is Person
class. In both cases, the superclass already exists, so no further work needs to
be done.

Person Person class

Object Object class

john

Metaclass3

...nil

john class

(a) Generating john’s first-level singleton
class. The first case in Figure 5 applies.

Person Person class

Object Object class

john

Metaclass3

...nil

john class john class
class

(b) Generating john’s second-level single-
ton class. The third case in Figure 5 ap-
plies.

Figure 7. Generating john’s first-level and second-level singleton class. We do not need
to generate more singleton classes recursively.

If we want to generate john’s third-level singleton class (Figure 8), its su-
perclass should be Person class class. This class does not exist yet. Therefore,
we generate Person class’ singleton class recursively. Person class class’ super-
class does, again, not exist yet. In the end, we have to generate second-level
singleton classes for Person and Object, in addition to john’s third-level singleton
class. First-level singleton classes for all helix classes already exist.

112 Matthias Springer

Person Person class

Object Object class

john

Metaclass3

...nil

john class john class
class

Person class
class

Object class
class

...

john class
class class

Figure 8. Generating john’s third-level singleton class. More singleton class must be
generated recursively.

Implementation In this section, we describe some chracteristics of the imple-
mentation of singleton classes in MagLev.

Terms and Definitions The following list explains some terms that we use in
the context of GemStone/S and MagLev throughout the implementation sections
and the code samples.

Object Object class Metaclass3anObject Object class
class

Class

<<class>>

<<virtualClass>><<virtualClass>>

<<class>>

<<virtualClass>>

<<class>>

<<class>>

<<virtualClass>>

Figure 9. Example for terms and definitions. Meta classes are colored gray. anObject
does not have a singleton class generated, neither does Object class class.

– An object’s Virtual Class: the class that is connected to the object by the
instance-of relation. Some people call it the actual class.

– A class is a Meta Class if it is a Smalltalk meta class or a Ruby singleton
class. First-level singleton classes of non-meta classes are Smalltalk Meta
Classes. For example, Object class is a meta class and a Smalltalk meta
class. Object class class is a meta class.

– An object’s Class: the first non-meta superclass in the virtual class’ superclass
hierarchy. For example, in Figure 8, john’s class is Person and john class
class’ class is Class. An object’s virtual class is equal to its class iff no
singleton class was generated for the object, yet. See Figure 9 for some
examples.

– A meta class’ Destination Class is the object whose virtual class is the meta
class. Therefore, it is the inverse virtual class relation.

Inter-language Collaboration in an OO VM 113

Objects and Classes in the GemStone/S Virtual Machine In the GemStone/S
virtual machine, every object is internally represented by a C++ object. Every
object has an object ID (oop), flags, and a pointer to its virtual class object. The
virtual class pointer is used during method lookup.

Classes are always instances of a class that inherits from Behavior and
Metaclass3. Behavior provides the instance variable format that contains a 32-bit
Integer with flags for the class. One of these flags determines if the class is a
meta class and can be set in Smalltalk and in the virtual machine. Metaclass3
provides the instance variable destClass that references the destination class.
Among other things, the destination class pointer is necessary to generate a
singleton class’ name.

Generating Singleton Classes In MagLev, we generate singleton classes when
they are accessed for the first time. This happens when the programmer calls
the method singleton_class or when the Ruby compiler operates on the single-
ton class while traversing the abstract syntax tree. In both cases, the method
rubySingletonClass is called to retrieve the singleton class object.

rubySingletonClass calls ensureSingletonClassGenerated: 2 to make sure
that two levels of singleton classes are generated. Then the virtual class is re-
turned. Figure 10 shows how this method recursively generates multiple levels of
singleton classes.

Object>>ensureSingletonClassGenerated: depth
depth == 0 ifTrue: [↑ self].
self checkGenerateSingletonClass.
self virtualClass ensureSingletonClassGenerated: depth - 1.

Figure 10. Entry point for singleton class generation.

We can distinguish two cases in which a singleton class must be generated.
In both cases, the virtual class is not a meta class5 (Figure 11).

– The object is not a class and no (first-class) singleton class was generated,
yet. In that case, the virtual class is the class of the object, which is not a
meta class.

– The object is a singleton class and no higher-level singleton class was gener-
ated, yet. In that case, the virtual class is Metaclass3, which is not a meta
class.

The method generateSingletonClass is responsible for creating self’s single-
ton class. This involves some operations that must be done in the lower-level VM
code. The following list shows how the singleton class is generated.

1. Compute the singleton class’ superclass according to Figure 5. This might
involve generating more singleton classes if the superclass does not exist, yet.

5 Keep in mind that singleton classes are also considered meta classes.

114 Matthias Springer

Object>>checkGenerateSingletonClass
self singletonAllowed

ifFalse: [↑ self].
self virtualClass isMeta

ifFalse: [self generateSingletonClass].

Figure 11. Generating a singleton class, if it does not yet exist. In GemStone/S,
we do not generate singleton classes for some special Smalltalk classes. This is an
implementation detail and not discussed in this work.

2. Generate a new class that is instance of Metaclass3 and set the superclass.
3. Set the meta class bit.
4. Set the instance variable destClass (destination class) to self.
5. Set self’s virtual class pointer to the newly-generated singleton class.

Evaluation Our implementation solves the problems we identified previously:
we can generate as many levels of singleton classes as we want to. Singleton
classes are considered during method lookup because they are inserted into the
class hierarchy as superclasses. From the Smalltalk side, we can access existing
singleton classes with virtualClass and generate and access singleton classes
with rubySingletonClass.

Performance Issues GemStone/S does some security checks in the virtual ma-
chine. For example, the implementation of isKindOf: ensures that the argument
or the argument’s class is an instance of Metaclass3. With singleton classes, this
is not necessarily the case anymore. However, the singleton class’ superclass is
always a subclass of Metaclass3. Therefore, we need to check the entire superclass
hierarchy. This is slower than the original implementation.

Recursive Singleton Class Generation If a singleton class’ superclass does
not exist, it is generated recursively. This might require generating even more
superclasses. In Figure 12, maxGen(obj) is the worst-case number of singleton
classes that must be generated when accessing obj’s singleton class.

maxDest(𝑜𝑏𝑗) =

⎧⎨⎩
destClass(obj) if obj is a meta class
obj if obj is a non-meta class
class(obj) else

maxGen(obj) = #helix classes + between(maxDest(obj), Object) + 2

Figure 12. Maximum number of singleton class generations when accessing a singleton
class. between(𝐴, 𝐵) be the number of classes between 𝐴 and 𝐵 in 𝐴’s superclass
hierarchy. In the formula, we have to add 2 because between(𝐴, 𝐵) does not count 𝐴
and because we have to count 𝑜𝑏𝑗’s singleton class.

Consider, for example, that we want to access the third-level singleton class for
the SmallInteger instance 42 and that the second-level singleton class was already

Inter-language Collaboration in an OO VM 115

generated. We may have to generate 42 class class class, SmallInteger class
class, second-level singleton classes for SmallInteger’s superclasses until Object
(3 classes in GemStone/S), and second level singleton classes for all helix classes
(5 classes in Maglev). In total, we may have to generate 10 singleton classes or
less.

We think that the number of singleton classes that must be generated, is
manageable and will not have a major effect on MagLev’s performance, because
it is unusual to generate many high-level singleton classes and singleton class
generation usually takes place directly after parsing Ruby source code files [16].

Persisting Singleton Classes Classes are first-class objects in GemStone/S,
so we can persist them just like any other object. The persistence concept in
GemStone/S is Persistence by Reachability. When an object is persisted, the
virtual machine does not only persist all instance variables but also the virtual
class reference and the superclass reference if it is a class. MagLev does currently
not support persisting changes that occurred in the process of singleton class
generation, i.e. we can generate singleton classes for persisted objects but not
persist the new reference to the singleton class object. This would require changing
the persisting procedure in the virtual machine in such a way that the singleton
class and its destination class are added to the dirty objects list.

3.3 Ruby Modules

Modules are the Ruby implementation of mixins, a way to add additional behavior
to classes without using multiple inheritance [6]. We can define modules in the
same way as we can define classes and they can have singleton classes, too. We can
include modules in classes, making their module methods available as instance
methods of the class. If multiple included modules define the same method then
the last method definition will overwrite the previous ones.

Method Lookup Suppose, the object a is an instance of class A and we first
included the module M1 and afterwards the module M2 in A. When we call a
method, Ruby looks for the method in the following order: a’s singleton class, A,
M2, M1, A’s superclass. From there on, Ruby keeps looking at the next superclass
and its included modules until the next superclass is nil. If no method was found,
the Ruby method method_missing is invoked. super calls within module methods
or instance methods are delegated to the next object in the list.

Problem We consider Ruby modules implemented correctly, if the following
features are supported by MagLev and the virtual machine.

– Defining modules and including modules in classes from Ruby code.
– Module-aware method lookup.
– Compatibility to exisiting Smalltalk code. The class hierarchy should not be

changed because some Smalltalk applications might make assumptions about
instance-of and superclass relations.

116 Matthias Springer

Solution MagLev’s Ruby parser was taken from Ruby MRI and adapted to
generate MagLev AST nodes. Now, we have to elaborate how to process AST
nodes involving modules – how to represent modules in MagLev and how to
include modules into classes.

Representing Modules In MagLev, a module is a class that cannot have instances.
A module is an object that has the class Module, i.e. its virtual class’ first non-
meta superclass is Module. It can have arbitrarily many levels of singleton classes.
As we can see in Figure 4, Module is the superclass of Metaclass3. A module’s
superclass is always Object. Module provides functionality for instance/module
methods, instance variables and constants handling. In MagLev, modules are
regarded as classes that cannot be instantiated.

Including Modules In order to simulate modules in an object-oriented pro-
gramming language without modules or mixins, we add included modules as
superclasses6 to the class hierarchy. Figure 13 shows Ruby modules from the
programmer’s point of view and their implementation as superclasses.

The process of including a module M in the class C involves the following steps.

1. Create a class P that contains all module methods as instance methods.
2. Set P’s superclass to C’s superclass.
3. Set C’s superclass to P.

It is important that we operate on copies of M because we can include M in more
than just one class. In this case, the copies of M must have different superclasses.

Implementation On the implementation level, MagLev’s way of handling mod-
ules has some characteristics.

Superclass References In MagLev, every class can have a different superclass
for each environment. For example, Array’s Smalltalk superclass is Sequencable
Collection whereas its Ruby superclass ::Enumerable (a module). These super-
class references are stored in Behavior’s instance variable methDicts. This is an
array that contains method dictionaries and superclass references for every envi-
ronment. The superclass that is used during method lookup is the superclass in
the environment of the currently executing method, i.e. the Ruby superclass is
used in Ruby methods and the Smalltalk superclass is used in Smalltalk methods.

Some classes that are usually not accessed from the Ruby environment, for
example GemStone/S GCI classes, have only the Smalltalk method dictionary
instead of this array. In this case, the superclass reference that is stored in
Behavior’s instance variable superClass is used during method lookup.
6 Bracha and Cook call mixins “abstract subclasses” [6]. In Ruby, we regard them

as abstract superclasses, because instance methods take precedence over module
methods.

Inter-language Collaboration in an OO VM 117

Array

SequenceableCollection

Collection

Object

nil

<<module>>
::Kernel

<<module>>
::Enumerable

<<use>>

<<use>>

(a) The programmer’s point of view: in-
cluding modules in classes Object and
Array.

Array

SequenceableCollection

Collection

Object

nil

::Kernel (copy)

::Enumerable (copy)

(b) Implementation: adding module
classes to the class hierarchy.

Figure 13. Implementing Ruby modules by inserting copies into the superclass chain.
Modules are colored gray.

Virtual Superclasses In MagLev, copies of modules that were inserted in the
superclass hierarchy are called virtual classes7. The virtual superclass is the
actual superclass of the class. However, when we ask a class for its (non-virtual)
superclass, we get the first virtual superclass that is not virtual. For example,
in Figure 14, Array’s virtual superclass is ::Enumerable but its superclass is
SequencableCollection. The virtual superclass is used during method lookup.
The flag that determines whether a class is virtual is set during module inclusion.

All copies of modules that were included in classes are virtual classes in
MagLev. Therefore, we can easily implement functionality that needs to distin-
guish between actual classes and included modules in the class hierarchy. For
example, the implementation of included_modules selects only virtual classes in
the superclass hierarchy.

Evaluation The MagLev implementation solves all the problems presented
before. We can define modules in the Ruby code, include modules in classes in
the Ruby code, and the method lookup is module-aware. Legacy Smalltalk code
7 Not to be confused with the virtual class pointer.

118 Matthias Springer

Array Sequenceable
Collection

Collection::Enumerable
(copy)

Object nil::Kernel (copy)

<<virtualSuper>>
<<super>>

<<virtualSuper>>
<<virtualSuper>>

<<super>>

<<super>>

<<super>>

<<virtualSuper>> <<virtualSuper>>
<<super>>

<<virtualSuper>>
<<super>>

Figure 14. Superclasses and virtual superclasses for Array’s class hierarchy. Virtual
superclasses are colored gray.

is not affected by included modules because the Smalltalk environment has its
own superclass.

However, mixins are a useful feature for the Smalltalk world, too [11]. It is cur-
rently not possible to define modules in the Smalltalk environment. Furthermore,
there is no convenient way of adding Smalltalk methods to existing modules.
Existing modules do not have a Smalltalk name because they were defined in
Ruby. Therefore, they are not listed in the class browser.

More work needs to be done to provide a way for defining modules in Smalltalk.
For example, MagLev could provide a method subclassModule: that must not
be sent to classes other than Object and generates a class with the (non-virtual)
class Module. To include modules from Smalltalk, MagLev could provide subclass:
methods with an additional includedModules: anOrderedCollection parameter,
similar to the uses: parameter in Pharo’s traits implementation [26].

4 Inter-language Method Invocation

In this section, we present how we can call Smalltalk methods from Ruby and
vice versa. We start by analyzing the differences between Smalltalk and Ruby
regarding method calling.

Smalltalk Methods In Smalltalk, we know the number of parameters for a
method when we look at the selector. The number of parameters is encoded
in the selector string and is equal to the number of colons. Therefore, it is not
possible to call a method with the wrong number of arguments. Smalltalk does
not support the concept of method visiblity: all methods are public.

Ruby Methods A Ruby selector does not indicate the number of parameters.
Furthermore, Ruby supports optional parameters, splat parameters and every
method can implicitly take a block argument. Ruby supports three visibility
modes for methods: public, protected, and private. Methods are public by default.

Inter-language Collaboration in an OO VM 119

Problem The following features should be supported by MagLev and the
GemStone/S virtual machine.

– Adding Ruby and Smalltalk methods to an existing class.
– Calling Ruby methods from Smalltalk and Smalltalk methods from Ruby.
– Supporting method visibility for Ruby methods. For example, calling a private

Ruby method from Ruby or Smalltalk should raise an exception.
– Raising an ArgumentError when calling a Ruby method from Ruby or Small-

talk with too few or too many arguments.

Solution In dynamically typed languages, methods are typically stored in a
method dictionary that maps selectors to methods. In MagLev, every environment
has its own method dictionary. This is necessary because Ruby and Smalltalk
define different methods with the same selector. For example, in Ruby, 'A'*
3 returns 'AAA' whereas the same expression produces a MethodNotUnderstood
exception in GemStone/S.

When we send a message to an object, the virtual machine looks up the
selector in the method dictionary of the sending environment. For example, when
we call a method from Ruby, MagLev looks for the selector in the Ruby method
dictionary. We need special constructs to call methods in another programming
languages.

Ruby Method Syntax To call Ruby methods from Smalltalk, the virtual machine
must perform the lookup in the Ruby method dictionary instead of the Smalltalk
method dictionary. MagLev extends the Smalltalk syntax such that Ruby selectors
can be called.

Ruby selectors start with @ruby1: and additional parameters are added with
_:. Instead of the underscore we can write any other string that is allowed as part
of a Smalltalk selector. Optional arguments are treated like normal arguments,
as we can see in Figure 15.

Ruby Primitives For calling a Smalltalk method from Ruby, we first have to
create an entry in the Ruby method dictionary for the Smalltalk method. For
this reason, MagLev provides the primitive8 method. Figure 16 shows how to
call Smalltalk methods from Ruby.

primitive adds a Smalltalk method to the Ruby method dictionary and
allows us to define a new selector for the method. class_primitive operates on
the singleton class.

Bridge Methods In Ruby, a method call with a wrong number of arguments
results in an ArgumentError exception. MagLev implements this behavior at the
method dispatch level. For every Ruby method, a number of bridge methods is
generated. A bridge method’s selector (full selector) consists of the method’s
selector and a suffix that indicates number and type9 of the arguments.
8 In Smalltalk, we can use primitives to call native code. In this context, we are referring

to Ruby primitives for calling Smalltalk methods.
9 Splat argument or block argument.

120 Matthias Springer

class Person
def self.new(block)

block.call(super)
end

def set_name(last, first = '')
@first = first
@last = last

end

def full_name
[@first, @last].join(' ')

end
end

(a) Ruby data model for a person. The
constructor creates an instance and calls
the block, if given.

Person class>>dummy
↑self @ruby1:new: [|person|

person
@ruby1:set_name: 'Doe'

_: 'John';
yourself].

Person>>testFullName
|person name|
person := self class dummy.
name := person @ruby1:full_name.
self

assert: name
equals: 'John Doe'.

(b) Test case that creates a person model
object and tests its full name in Smalltalk.

Figure 15. Calling Ruby methods from Smalltalk, including optional parameters and
block parameters.

Object subclass: 'Person'
instVarNames: #(first name)
...

Person class>>with: aBlock
|person|
person := self new.
aBlock value: person.
↑person

Person>>name: last first: first
first := first
last := last.

Person>>fullName
↑first, ' ', last

(a) Smalltalk data model for a person.
with: creates an instance and calls the
block.

class Person
class_primitive '__new', 'with:'
primitive 'set_name', 'name:last:'
primitive 'full_name', 'fullName'

def self.dummy
__new do |person|

person.set_name('Doe', 'John')
end

end

def test_full_name
name = class.dummy.full_name
assert_equal(name, 'John Doe')

end
end

(b) Test case that creates a person model
object and tests its full name in Ruby.

Figure 16. Calling Smalltalk methods from Ruby, using primitives. Smalltalk does not
support optional parameters.

Figure 17. Ruby selector with suffices for initialize(*args, &block).

Inter-language Collaboration in an OO VM 121

Figure 17 shows the syntax for Ruby bridge method selectors. The number
after the number sign is the number of arguments that the method expects. If
the next character is a star, then the method takes an additional splat argument.
If it does not, this character must be an underscore. The last character is an
ampersand if the method takes an additional block argument. If it does not, this
character must also be an underscore.

Figure 18. Automatically generated bridge methods for ::Hash>>fetch. Methods that
will raise no argument error are colored green. Methods that might raise an argument
error depending on the splat argument are colored gray. Methods that will definetely
raise an argument error are colored red.

Every time we define a method, at least 16 bridge methods are generated
(Figure 18): all combinations for zero to three parameters and with or without
block argument or splat argument. Only the bridge method with the correct
signature executes the newly-defined method. The other bridge methods raise an
ArgumentError. If the method takes more than three parameters, a 17th bridge
method with the correct signature is generated. If a method takes optional
arguments, all bridge methods that miss one or all optional arguments (e.g.
fetch#1__) call the full bridge method (fetch#2_&) with the maximum number
of arguments and automatically provide the default argument values.

If we map a Smalltalk method to the Ruby environment with a primitive call,
MagLev generates bridge methods as well. MagLev does not distinguish between
Ruby methods and primitives.

MagLev’s Ruby compiler translates Ruby selectors in method calls to full selec-
tors, depending on the arguments that were provided. For example, {}.fetch(1,
2, 3) is translated to {}.fetch#3__(1, 2, 3) and raises an ArgumentError.

122 Matthias Springer

Implementation In this section, we show some characteristics of MagLev’s
implementation of the concepts presented before.

Ruby Method Syntax Figure 19 shows the syntax for calling Ruby methods from
Smalltalk.

⟨ruby-call-node⟩ ::= ‘@ruby1:’ ⟨selector⟩ [⟨first-arg⟩]

⟨first-arg⟩ ::= ‘:’ ⟨arg-value⟩ [⟨next-arg⟩] [⟨splat-arg⟩] [⟨block-arg⟩]

⟨next-arg⟩ ::= ⟨normal-arg⟩ [⟨next-arg⟩]

⟨normal-arg⟩ ::= ‘_:’ ⟨arg-value⟩

⟨block-arg⟩ ::= ‘__BLOCK:’ ⟨arg-value⟩

⟨splat-arg⟩ ::= ‘__STAR:’ ⟨arg-value⟩

Figure 19. Smalltalk syntax for Ruby method calls in extended Backus-Naur form.
⟨selector⟩ can be any valid Ruby selector. ⟨arg-value⟩ must be a valid Smalltalk expres-
sion, additional brackets might be necessary.

In Figure 15a, the block parameter for self.new was not passed as a Ruby
block argument but as a normal argument. In Ruby, block parameters begin with
an ampersand in the method signature.

In MagLev, it is currently not possible to call Ruby methods without normal
arguments and with a block argument or a splat argument. It is not trivial to
change this because we need a colon after ⟨selector⟩. Otherwise, ⟨block-arg⟩ or
⟨splat-arg⟩ would be misinterpreted as a message send to the result of ‘@ruby1:’
⟨selector⟩.

Ruby Primitives Before we can call Smalltalk methods from Ruby, we have to
add them to the Ruby method dictionary. The method primitive generates bridge
methods that either raise an ArgumentError or contain a copy of the Smalltalk
method object. primitive automatically detects the number and the types of the
arguments by evaluating the Smalltalk selector.

Bridge Methods For every Ruby method, a number of bridge methods are gener-
ated. MagLev generates a full selector for every Ruby method call from the Ruby
environment. The concept described in the solution paragraph is implemented
slightly different: if we call a method with more than three arguments, MagLev
always generates the full selector with three arguments and a splat argument.
For instance, if we call the method add_numbers(1, 2, 3, 4, 5), MagLev will
generate the full selector add_numbers#3*_ and pass the last two arguments as a
splat argument. Therefore, the bridge method can unpack the splat argument and
raise and argument error if the number of arguments does not match. If MagLev

Inter-language Collaboration in an OO VM 123

did not generate the full selector in such a way, we would get a NoMethodError
because MagLev generates bridge methods for only up to three arguments.

In Ruby, existing methods are overwritten if we redefine a method. Ruby does
not support method overloading, i.e. we cannot define multiple methods with
a different number of arguments. In MagLev, this is possible during bootstrap,
when basic Ruby classes are created. For example, MagLev needs to execute
different Smalltalk methods for the Ruby method send. For send(:join), MagLev
calls the method __rubySend: #join, whereas for send(:join, ','), MagLev calls
__rubySend: #join with: ','. We can use this feature to implement methods
that behave differently with different number of parameters, without having
to check arguments in the method body explicitly. For example, ::Hash>>fetch
has implementations for one and two arguments: with and without the default
argument.

Ruby Wrapper MagLev provides an easy way to work with objects that have
only Ruby methods. RubyWrapper is a proxy that translates all Smalltalk message
sends to the proxy to Ruby message sends to the actual object. Figure 20 shows
what the test case from Figure 15 looks like with RubyWrapper. The source code is
now easier to read and Ruby methods are seamlessly integrated in the Smalltalk
environment.

Person class>>dummy
↑(RubyWrapper on: self) new: [|person|

person set_name: 'Doe' _: 'John'].

Person>>testFullName
|person|
person := self class dummy.
name := person full_name.
self

assert: name
equals: 'John Doe'.

Figure 20. Calling Ruby methods from Smalltalk with RubyWrapper.

Ruby wrappers are entirely implemented in Smalltalk. A RubyWrapper instance
holds a reference to the actual object. doesNotUnderstand: captures all Ruby
message sends from the Smalltalk environment and performs a Ruby message send,
using the Ruby method send10 and the syntax shown in Figure 19. Furthermore,
RubyWrapper automatically wraps all return values and block arguments before
they are passed to a Smalltalk block.

Method Visibility A method’s visibility is saved inside an instance variable
for the method object. Method visibility is checked during method lookup. The
method lookup algorithm evaluates the method visibilty flag and the calling
10 send is Ruby’s equivalent of the Smalltalk method perform:.

124 Matthias Springer

method. If the algorithm determines that the method must not be called, it
returns no method object – just as if no method was found at all.

In that case the method method_missing is called. This method generates a
NoMethodError. It also checks if there is a private or protected method with that
name and provides an exception description text accordingly.

Evaluation MagLev implements the features that we asked for in the problem
section: we can add and call methods in another environment, and MagLev re-
spects method visibility. Bridge methods ensure that MagLev raises an argument
error if the number of arguments is wrong. However, we noticed that existing
GemStone/S tools were not made for MagLev and lack Ruby support.

Adding Methods It is possible to add Smalltalk methods and Ruby methods to
existing classes. In Ruby, we simply open the class again and add the method
definition (also called monkey patching). In Smalltalk, we can add new methods to
existing classes in the class browser or use Behavior>>compile:. GemStone/S does
not come with a graphical user interface. Therefore, we have to use a frontend
that connects to the stone via network (GCI), e.g. GemTools, an IDE written in
Squeak.

It is, however, difficult to add Smalltalk methods to classes that do not
have a Smalltalk name (nameless classes), i.e. classes that do not have an entry
in Smalltalk’s globals dictionary. By default, this applies to all classes that
were defined in Ruby. Existing GemStone/S IDEs such as GemTools and the
VisualWorks GemStone frontend were not designed to work with MagLev: the
class browser does not show nameless classes and modules. We developed the
MagLev Database Explorer11, an experimental MagLev IDE, that solves this
problem.

Calling Methods We can call Ruby methods from Smalltalk and Smalltalk
methods from Ruby. However, the syntax for calling Ruby methods from Smalltalk
has some limitations, so that we cannot call Ruby methods with a block or splat
argument without normal arguments from Smalltalk. RubyWrapper solves this
problem but it is inefficient. More work could be done to make RubyWrapper more
efficient, e.g. by providing a custom method lookup routine with a meta-object
protocol [28]. Furthermore, a new syntax for calling Smalltalk methods from Ruby
would be convenient, such that we do not have to define primitives anymore.

Bridge Methods MagLev generates bridge methods for up to three arguments
when a Ruby method is defined. Therefore, when we call a Ruby method from the
Smalltalk side with the wrong number of arguments, we get a MethodNotUnderstood
exception if we use more than three arguments. Further work needs to be done to
raise an ArgumentError instead. One approch is to always call the bridge method
with a splat argument when calling a Ruby method with more than three param-
eters from Smalltalk. MagLev uses the same technique for calling Ruby methods
from Ruby.
11 https://github.com/matthias-springer/maglev-database-explorer-gem

https://github.com/matthias-springer/maglev-database-explorer-gem

Inter-language Collaboration in an OO VM 125

5 Accessing Instance Variables
Ruby and Smalltalk have different concepts of instance variables. In Smalltalk,
instance variables have to be defined as part of the class definition. Therefore,
if we define new instance variables, the class object must be updated and all
instances must be migrated to the new class version. In Ruby, we can dynamically
add new instance variables at runtime. We do not have to specify them on class
creation. We can simply access instance variables in the source code without
defining them anywhere else.

Problem The following features should be supported by MagLev and the
GemStone/S virtual machine.

– Defining instance variables on class definition in Smalltalk.
– Defining instance variables at any time in Ruby.
– Accessing instance variables defined in Ruby or Smalltalk from the other

programming language.
– Having different instance variables for different objects of the same class.

Solution MagLev introduced the concept of dynamic instance variables. In
addition to normal (static) instance variables that are defined on class creation,
dynamic instance variables can be defined at any time.

Static Instance Variables If we define an instance variable in the Smalltalk class
definition, a static instance variable is created. Therefore, we can define static
instance variables in Smalltalk only. We can use static instance variables in Ruby
and Smalltalk like normal instance variables.

Dynamic Instance Variables If we define or access an instance variable that
was not defined in the Smalltalk class definition in Ruby, MagLev accesses a
dictionary that contains the dynamic instance variables for that object. Every
object has its own dictionary. Therefore, two different objects that are instances
of the same class can have different instance variables. This is not possible with
static instance variables because they must be defined in the class definition.

If we want to access dynamic instance variables in Smalltalk, we have to use
dynamicInstVarAt: and dynamicInstVarAt:put:. In Smalltalk, we have to know
whether an instance variable is static or dynamic because we have to use different
constructs to access them.

Implementation In Ruby, static instance variables have two names: the name
of the static instance variable as it was defined in the class definition and that
same name with an _st_ prefix. For instance, we can access the static instance
variable size in ::Hash with @size and @_st_size. If we call instance_variables
in Ruby, we only get the prefixed names. This is the only way to distinguish static
instance variables from dynamic instance variables in Ruby. MagLev provides a
way to hide specific static instance variables from Ruby. For example, destClass
in Metaclass3 is not visible in the Ruby environment.

126 Matthias Springer

Evaluation MagLev’s implementation of dynamic and static instance variables
solves all requirements that we listed in the problem section. Smalltalk and Ruby
programmers can define instance variables in the way they are used to. With
dynamic instance variables it is possible to add new instance variables at any
time, in both Ruby and Smalltalk. Futhermore, it is possible to use instance
variables beyond environment boundaries. However, dynamic instance variables
should be integrated more seamlessly in Smalltalk.

Integration of Dynamic Instance Variables In Ruby, dynamic and static in-
stance variables are integrated seamlessly in the programming language. As a
programmer, we do not have know if we are accessing a dynamic or static in-
stance variable. In Smalltalk, however, we need to use special constructs to access
dynamic instance variables. In future versions of MagLev, the Smalltalk compiler
could be adapted, such that all references to dynamic instance variables are
implicitly replaced by the method calls for reading and writing dynamic instance
variables.

6 Related Work

In section, we compare the solutions presented before and their implementation in
MagLev to other multi-language virtual machines. We will see that some virtual
machines and languages were specifically designed to support multiple languages,
whereas others were not and had to solve problems that are similar to ours.

6.1 .NET CLI Languages

The Common Language Infrastructure (CLI), standardized as ECMA-335 [13],
is an open specification for language-independent and platform-independent soft-
ware development. Among other things, it describes the Virtual Execution Sys-
tem (VES), the Common Language Specification (CLS), and the instruction set
of the Common Intermediate Language (CIL). The CLI was designed to support
multiple programming languages. Compilers transform source code to CIL code
and the VES executes that code.

Common Language Specification The CLS is a set of rules that is important for
language implementors and application developers. Some programming languages
offer features that are not supported in other programming languages. For exam-
ple, according to Hamilton, “incompatible types are the primary barriers that
keep languages from interoperating” [17]. The CLS ensures that CLS-compliant
components can interact with each other, e.g. by defining a set of data types that
all CLS-compliant languages support. Language implementors have to support
these data types to call their implementation CLS-compliant and their compilers
must generate CLS-compliant artifacts that do not use other data types in their
public interface.

Inter-language Collaboration in an OO VM 127

CLI classes In contrast to Smalltalk, it is not possible to add new methods to
existing CLI classes. Therefore, we can write source code for a class in only one
language. For example, it is not possible add methods written in both C# and
VB.NET to the same class.

C# and VB.NET The two most popular languages for the .NET framework
are C# and Visual Basic .NET [1]. Both languages were developed for the CLI.
They both use the same object model and the same standard library. The .NET
framework does not support mixing different languages in one assembly12. The
only way to mix both languages is to create an assembly/library in one language
and to import it in an assembly written in the other language.

CLS Compliance The public interface of an assembly should be CLS-compliant.
Consider, for example, that we created a C# assembly with a class that has the
instance methods example and eXample. From VB.NET, we cannot call any of
these methods because VB.NET is case-insensitive. According to the CLS, “for
two identifiers to be considered different under the CLS they shall differ in more
than simply their case.” [13].

Conclusion For C# and VB.NET, the object model does not have to be
mapped or transformed because both languages have the same object model.
Both languages share the same type system. Components written in VB.NET
and C# can interact with each other as long as they are CLS-compliant.

Ruby .NET The first implementation of Ruby for the CLI was Ruby .NET13,
developed at the Queensland University of Technology.

Architecture In Ruby .NET, Ruby objects are always instances of Ruby.Object.
Every Ruby object has a reference to its class and a dictionary that contains the
instance variables. Futhermore, Ruby .NET has its own Ruby.Class to support
instance method changes at runtime and other Ruby features.

Calling Methods In Ruby .NET [19], instances of Ruby.Class have their own
method dictionaries that map selectors to Ruby methods. Ruby methods are
represented as singleton14 classes with multiple call methods for up to 10 pa-
rameters and a method for more than 10 parameters: call0, call1, call2,
Every method takes a block argument that may be null if no block was given.
The method call is used for methods with a splat argument. In this case, no
other arguments except for the block argument are allowed. The abstract Ruby
method superclass raises an argument error for all call methods. Ruby method
12 Assemblies are CIL artifacts, i.e. EXE files or DLL files.
13 https://code.google.com/p/rubydotnetcompiler/source/checkout
14 We refer to the singleton design pattern [14]. Not to be confused with Ruby singleton

classes.

https://code.google.com/p/rubydotnetcompiler/source/checkout

128 Matthias Springer

classes overwrite call methods that have the correct number of arguments and
execute the actual method.

When an instance of a CLI class is accessed in Ruby for the first time, Ruby
.NET “dynamically create[s] a special Ruby.Class object to represent the foreign
CLI type.” [19]. These Ruby classes use CLI reflection instead the Ruby method
dictionary during method lookup. Ruby .NET retains a dictionary that maps
CLI classes to already generated Ruby classes.

If we want to call methods on a CLI object, we do not need a special syntax.
We can call methods on CLI objects like any other Ruby method. Calling a Ruby
method from another CLI language is more difficult. We have to use the method
Ruby.Eval.CallPublic and provide the Ruby object, a caller context and the
arguments of the Ruby method. Ruby .NET provides property getters for some
important Ruby objects, e.g. Ruby.Inits.rb_cObject returns the Ruby Object
class.

Ruby Modules The CLR does not support mixins. Modules and classes are
represented as the same CLI classes Ruby.Class. This class has a type instance
variable that determines if the object is a class or a module. Depending on that
flag, certain methods raise an error or behave differently. When a module is
included in a class, Ruby .NET creates a new class, copies over all instance
methods and instance variables to the class, sets the type variable accordingly,
and changes the superclass references, similarly to MagLev.

Ruby Singleton Classes Ruby .NET generates singleton classes on the first access.
It does not support generating singleton classes higher than first-level singleton
classes. Higher-level singleton classes can be generated, but their superclass is
not set correctly.

Comparison to MagLev The biggest conceptual difference between MagLev
and Ruby .NET is that, in MagLev, Ruby classes and Smalltalk classes are the
same objects. In Ruby .NET, there is a CLI class and a Ruby class for some
classes. Classes that were defined in Ruby do not have a CLI class at all. Ruby
method selectors are implemented similarly in Ruby .NET and MagLev. In both
implementations, methods exist for different argument numbers and argument
types. In MagLev, we call these methods bridge methods. Modules and singleton
classes are also implemented similarly. In Ruby .NET, however, they are entirely
built on top of the CLR: Ruby .NET simulates the method lookup for Ruby
objects, whereas, in MagLev, the virtual machine was changed to support the
Ruby method lookup.

IronRuby IronRuby15 is another implementation of the Ruby programming
language, built on top of the Dynamic Language Runtime (DLR) [12]. The DLR
is a library built on top of the CLI. It provides functionality for dynamic method
dispatch, code generation, and other features of dynamically typed programming
15 http://www.ironruby.net/

http://www.ironruby.net/

Inter-language Collaboration in an OO VM 129

languages. All DLR functionality can be manually implemented. However, the
DLR simplifies language implementation and interaction between two DLR lan-
guages (e.g. IronRuby and IronPython). The DLR also simplifies the interaction
of C# with DLR languages in combination with C#’s dynamic keyword [4]. This
keyword was introduced in C# 4.0 to bypass static type checking. We do not
discuss IronRuby or the DLR any further in this work and encourage the reader
to take a look at the DLR documentation [12].

6.2 JRuby

The idea behind the Java Virtual Machine (JVM) is to support platform-inde-
pendent software development (“write once, run anywhere”) by providing JVM
implementations for many platforms. The JVM was built to support a single
language: Java. Other programming languages have been implemented on top of
the JVM, e.g. Scala, Groovy, and Ruby. JRuby is an implementation of Ruby for
the JVM.

In JRuby, all Ruby objects are instances of the Java class RubyObject and
Ruby classes are instances of the Java class RubyClass. Ruby classes can have
only Ruby methods and Java classes can have only Java methods.

Calling Ruby and Java Methods If we want to call a Ruby method from Java, we
need a helper object that provides functionality for operating with Ruby source
code and Ruby objects, e.g. an instance of ScriptingContainer. Other helper
classes exist that use the Scripting for the Java Platform API (JSR 22316).
The helper object provides methods for evaluating Ruby source code, as well
as reading and writing local and global variables. In addition, we can evaluate
Ruby code on a Ruby object that we received at the end of a prior Ruby code
evaluation.

If we want to use a Java class from Ruby, we have to require the package
java. Afterwards, we can access all Java classes in the class path like normal
Ruby classes [24]. JRuby automatically wraps Java classes in a proxy object. This
allows Ruby programmers to define additional Ruby methods on the wrapper
object. However, these methods are not available from Java.

Every time we pass an argument to a method in the other programming
language, it is converted to the according Ruby or Smalltalk class. For example,
java.lang.Integer objects are converted to Fixnum objects and vice versa.

Ruby Modules Similarly to MagLev, JRuby adds included modules as super-
classes to the class hierarchy. JRuby creates so-called included module wrappers.
An included module wrapper is a RubyClass that holds a reference to the module
and delegates constant handling, method handling and instance variable handling
to the module.
16 http://www.jcp.org/en/jsr/detail?id=223

http://www.jcp.org/en/jsr/detail?id=223

130 Matthias Springer

Instance Variable Tables JRuby stores instance variables in variable tables.
Every Ruby object has its own variable table. It consists of an array of instance
variable values (Ruby objects). In addition, every Ruby object has a variable
table manager that maintains the mapping of instance variable names to variable
table offsets. This is similar to dynamic instance variables in GemStone/S, except
that dynamic instance variables map instance variable names to values directly.

6.3 STX:LIBJAVA

With STX:LIBJAVA17, Kurs et al. implemented the Java programming language
on top of the Smalltalk/X virtual machine. STX:LIBJAVA [18] uses a modified
Smalltalk/X virtual machine that can execute both Smalltalk byte code and
Java byte code. It distinguishes between Java objects and Smalltalk objects,
but both live in the same object memory. When the control flow crosses the
language boundary, i.e. a Smalltalk method is called from Java or the other way
around, STX:LIBJAVA generates a proxy method that performs the method
resolution, transforms arguments, and passes the control flow to the real method.
In MagLev, bridge methods are a similar concept but they do not lookup methods
by themselves or transform objects between programming languages.

In a later paper, Kurs et al. evaluate the concept of behavior objects for
Java in Smalltalk/X [20]. Just as in MagLev, every Smalltalk/X object is a Java
object. Instead of environments, Kurs et al. use different behavior objects for every
programming language. A behavior object contains the methods for an object in
one programming language. A Smalltalk behavior object is a Smalltalk class and
a Java behavior object is an object similar to a Java class. Therefore, objects can
have two classes. In addition, they use mapping functions to transform the object
layout for object state, assuming that different programming languages expect
different object state layouts. Just as in MagLev, every programming language
can define a different superclass. The superclass is stored in the behavior object.

7 Conclusion

In this work, we showed how MagLev was implemented on top of the GemStone/S
virtual machine and how Ruby source code can interact with Smalltalk source
code. We showed how MagLev maps the Ruby and the Smalltalk object model:
MagLev extends Smalltalk’s meta class model to Ruby’s singleton class model
and supports Ruby modules by inserting virtual classes into the superclass hier-
archy. We showed how methods are invoked: MagLev introduces the concept of
language environments that seperate the Ruby world from the Smalltalk world.
Ruby method calling conventions and error handling is implemented with bridge
methods. Finally, we showed how instance variables are stored with dynamic
instance variables: they are stored in an instance variable dictionary for every
object.
17 https://swing.fit.cvut.cz/projects/stx-libjava

https://swing.fit.cvut.cz/projects/stx-libjava

Inter-language Collaboration in an OO VM 131

MagLev’s key characteristic is that every Ruby object is a Smalltalk object
and vice versa. We think that this is the best form of language integration. When
we looked at JRuby and Ruby .NET, we realized that an object is always either
a Ruby object or a Java/CLI object. Therefore, objects must be converted or
wrapped when calling into another language. MagLev can avoid this overhead.

When we analyzed related work, we realized that there are virtual machines
and programming languages that were specifically designed to support and in-
teract with multiple programming languages. Examples are the CLR and the
programming languages C# and VB.NET. These programming languages avoid
some of the problems we encountered with MagLev by setting up a standard
for inter-language collaboration: the Common Language Specification (CLS).
However, the CLS also restricts programmers: they may not be allowed to use
all language features when writing components that interact with components
written in another language. We think that this is reasonable in some cases. For
example, most programmers will probably never want to call methods on higher-
level singleton classes in MagLev’s Smalltalk environment, because singleton
classes are a Ruby characteristic. Therefore, we think that we do not only “need
more open, language independent virtual machines” [27], but also standards like
the Common Language Specification (CLS) for better language integration.

Bibliography

1. TIOBE Software: Tiobe Index, http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html

2. Basili, V.R., Briand, L.C., Melo, W.L.: How reuse influences productivity in object-
oriented systems. Commun. ACM 39(10), 104–116 (Oct 1996)

3. Bergel, A., Ducasse, S., Nierstrasz, O.: Analyzing module diversity. JOURNAL OF
UNIVERSAL COMPUTER SCIENCE 11, 2005 (2005)

4. Bierman, G., Meijer, E., Torgersen, M.: Adding dynamic types to c. In: Proceedings
of the 24th European conference on Object-oriented programming. pp. 76–100.
ECOOP’10, Springer-Verlag, Berlin, Heidelberg (2010)

5. Bowkett, G.: Smalltalk, outside the ivory tower? (Jul 2007), http://gilesbowkett.
blogspot.nl/2007/07/smalltalk-outside-ivory-tower.html

6. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proceedings of the European
conference on object-oriented programming on Object-oriented programming sys-
tems, languages, and applications. pp. 303–311. OOPSLA/ECOOP ’90, ACM, New
York, NY, USA (1990)

7. Brunklaus, T., Kornstaedt, L.: A virtual machine for multi-language execution.
Tech. rep., Programming Systems Lab, Universität des Saarlandes, Saarbrücken
(2002)

8. Butterworth, P., Otis, A., Stein, J.: The gemstone object database management
system. Commun. ACM 34(10), 64–77 (Oct 1991)

9. Cangiano, A.: The great ruby shootout (Dec 2008), http://programmingzen.com/
2008/12/09/the-great-ruby-shootout-december-2008/

10. Cangiano, A.: The great ruby shootout (Jul 2010), http://programmingzen.com/
2010/07/19/the-great-ruby-shootout-july-2010/

11. Cassou, D., Ducasse, S., Wuyts, R.: Traits at work: The design of a new trait-based
stream library. Comput. Lang. Syst. Struct. 35(1), 2–20 (Apr 2009)

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://gilesbowkett.blogspot.nl/2007/07/smalltalk-outside-ivory-tower.html
http://gilesbowkett.blogspot.nl/2007/07/smalltalk-outside-ivory-tower.html
http://programmingzen.com/2008/12/09/the-great-ruby-shootout-december-2008/
http://programmingzen.com/2008/12/09/the-great-ruby-shootout-december-2008/
http://programmingzen.com/2010/07/19/the-great-ruby-shootout-july-2010/
http://programmingzen.com/2010/07/19/the-great-ruby-shootout-july-2010/

132 Matthias Springer

12. Chiles, B., Turner, A.: Dynamic language runtime (Dec 2009), http://dlr.
codeplex.com/wikipage?title=Docs%20and%20specs

13. ECMA International: Standard ECMA-335 - Common Language Infrastructure
(CLI). Geneva, Switzerland, 5 edn. (December 2010)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman, Amsterdam, 1 edn.
(1995), 37. Reprint (2009)

15. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation.
Addison Wesley (1983)

16. Günther, S., Fischer, M.: Metaprogramming in ruby–a pattern catalog. In: 17th
Conference on Pattern Languages of Programs (PLoP) (2010)

17. Hamilton, J.: Language integration in the common language runtime. SIGPLAN
Not. 38(2), 19–28 (Feb 2003)

18. Hlopko, M., Kurš, J., Vraný, J., Gittinger, C.: On the integration of smalltalk and
java: practical experience with stx:libjava. In: Proceedings of the International
Workshop on Smalltalk Technologies. pp. 5:1–5:12. IWST ’12, ACM, New York,
NY, USA (2012)

19. Kelly, W., Gough, J.: Ruby.net: a ruby compiler for the common language infras-
tructure. In: Proceedings of the thirty-first Australasian conference on Computer
science - Volume 74. pp. 37–46. ACSC ’08, Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia (2008)

20. Kurs, J., Vraný, J., Bergel, A.: Supporting language interoperability by dynamically
switched behaviors. In: DATESO. pp. 73–84 (2011)

21. Maier, D., Stein, J., Otis, A., Purdy, A.: Development of an object-oriented dbms.
In: Conference proceedings on Object-oriented programming systems, languages
and applications. pp. 472–482. OOPLSA ’86, ACM, New York, NY, USA (1986)

22. Marr, S., Wael, M.D., Haupt, M., D’Hondt, T.: Which problems does a multi-
language virtual machine need to solve in the multicore/manycore era? In: Lopes,
C.V. (ed.) SPLASH Workshops. pp. 341–348. ACM (2011)

23. Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H.: An empirical study of
software reuse vs. defect-density and stability. In: Proceedings of the 26th Interna-
tional Conference on Software Engineering. pp. 282–292. ICSE ’04, IEEE Computer
Society, Washington, DC, USA (2004)

24. Nutter, C., Enebo, T., Sieger, N., Bini, O.: Using Jruby: Bringing Ruby to Java.
Pragmatic Bookshelf Series, Pragmatic Bookshelf (2011)

25. Pavlata, O.: Ruby object model–the s1 structure (2012)
26. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable units of

behaviour. In: In Proc. European Conference on Object-Oriented Programming. pp.
248–274. Springer (2003)

27. Vraný, J.: Supporting Multiple Languages in Virtual Machines. Ph.D. thesis, Faculty
of Information Technologies, Czech Technical University in Prague, Prague (Sep
2010)

28. Vraný, J., Kurs, J., Gittinger, C.: Efficient method lookup customization for small-
talk. In: Furia, C.A., Nanz, S. (eds.) TOOLS (50). Lecture Notes in Computer
Science, vol. 7304, pp. 124–139. Springer (2012)

http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs

Inter-language Collaboration in an OO VM 133

Zusammenfassung

Unter mehrsprachigen virtuellen Maschinen versteht man virtuelle Maschinen
(VMs), welche die Ausführung von Quelltext in verschiedenen Programmierspra-
chen unterstützen. Eine derartige Funktionalität bietet eine Reihe von Vorteilen,
sowohl bei der Anwendungsentwicklung, als auch bei der Implementierung von
Programmiersprachen: Anwendungsentwickler können Bibliotheken verwenden,
die in verschiedenen Programmiersprachen geschrieben sind. Programmierer, die
eine Programmiersprache implementieren, müssen sich keine Gedanken mehr
über grundlegende VM-Funktionalitäten, wie zum Beispiel Garbage Collection
oder Speicherverwaltung machen.

In dieser Arbeit stellen wir MagLev, eine Implementierung der Ruby Program-
miersprache auf Basis der virtuellen Maschine von GemStone/S, vor. GemStone/S
ist eine Smalltalk-Implementierung. Am Beispiel von Ruby und Smalltalk zeigen
wir, welche Probleme es bei der Kommunikation zwischen Softwarekomponenten
gibt, die in verschiedenen Programmiersprachen geschrieben sind. Für diese Pro-
bleme stellen wir dann die Lösung und deren Umsetzung in MagLev vor. Wir
zeigen, wie man die Ruby und Smalltalk Objektmodelle aufeinander abbildet,
wobei der Schwerpunkt auf Ruby Singleton-Klassen, Smalltalk Meta-Klassen und
Ruby Modulen liegt. Wir zeigen außerdem, wie Smalltalk Quelltext von Ruby
(bzw. Ruby Quelltext von Smalltalk) aufgerufen werden kann und wie der Zugriff
auf Instanzvariablen funktioniert.

Wir stellen fest, dass MagLev alle diese Probleme löst. Jedoch sind die exis-
tierenden Programmierwerkzeuge nicht an MagLev angepasst, sodass einige Pro-
bleme nur auf technischer Ebene gelöst wurden. Beispielsweise ist es mit den
existierenden GemStone/S IDEs nicht möglich, Klassen zu verändern, die in Ruby
erstellt wurden.

Beim Vergleich von MagLev mit anderen Programmiersprachen stellen wir
fest, dass zahlreiche Implementierungen wie JRuby und Ruby .NET zwischen
Ruby und Smalltalk Objekten unterscheiden. Das ist bei MagLev nicht der Fall:
jedes Ruby Objekt ist auch ein Smalltalk Objekt. Deshalb müssen bei JRuby
und Ruby .NET Objekte konvertiert werden, wenn Methoden in einer ande-
ren Programmiersprache aufgerufen werden. Bei MagLev entfällt dieser Schritt.

Eigenständigkeitserklärung von
Matthias Springer

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst sowie
keine anderen Quellen und Hilfsmittel als die angegebenen benutzt habe.

1. Juli 2013
Matthias Springer

	Inter-language Collaboration in an Object-oriented Virtual Machine
	Multi-language Virtual Machines
	Introduction to MagLev
	Programming Languages
	Terms and Definitions
	Basic Concepts of MagLev

	Mapping Object Models
	Classes in Ruby and Smalltalk
	Ruby Singleton Classes and Smalltalk Meta Classes
	Ruby Modules

	Inter-language Method Invocation
	Accessing Instance Variables
	Related Work
	.NET CLI Languages
	JRuby
	STX:LIBJAVA

	Conclusion
	Bibliography

